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1 Introduction

A Mirror Sector, an identical copy of the Standard Model (SM) [1, 2], is currently of consid-

erable interest. Two key results follow from introducing an approximate spacetime parity

symmetry, P , that exchanges the two sectors. First, dark matter may be mirror baryons [3]

with a density expected to be the same order as the baryon density. Second, the SM Higgs

boson can be understood as a pseudo-Goldstone boson via the Twin Higgs mechanism [4],

even though it has order unity couplings, with a modest amount of fine-tuning.
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A key question is how P is broken. Simple schemes that have P broken only via a

Higgs mass term suffer from two key problems. First, the theory is excluded from excessive

dark radiation from the mirror sector. Second, in such schemes mirror dark matter is in

part hydrogen-like, with parameters that are excluded by self scattering. Further there is

the question of the origin of this P -breaking Higgs mass.

Recently we introduced Minimal Mirror Twin Higgs (MMTH) [5], where P is broken

only in the Yukawa couplings. In the absence of an exotic cosmological history after the

two sectors decouple (see [6, 7] for examples of such history), we showed that P -breaking in

the Yukawa couplings is a necessity to solve the dark radiation problem, even if additional

interactions allow the decoupling temperature to be arbitrary. Also, a variety of candidates

for mirror dark matter are possible that are not excluded and predict rich phenomenology.1

Furthermore, in MMTH a P -breaking Higgs mass term, necessary for the Twin Higgs

mechanism, is generated by 1-loop radiative corrections. We showed that MMTH has

correlated signals in Higgs decays, direct detection of dark matter and dark radiation, over

a region of parameter space where the fine-tuning for the electroweak scale is 10-50%.

Nevertheless, MMTH itself leads to two questions: what is the origin of P breaking

in the Yukawa sector? Given the large number of parameters in the Yukawa sector, how

predictive can the theory be? In section 2 we introduce a minimal flavor hierarchy for

MMTH, defined in eq. (2.2), where the mirror fermion spectrum is predicted to leading

order in terms of a single parameter ε′/ε. Such hierarchies arise in Froggatt-Nielsen theo-

ries [9] with an Abelian flavor symmetry spontaneously broken by a small parameter ε, as

shown in eq. (2.3), and they can also arise in extra-dimensional theories of flavor [10].

In section 3 we study in detail the resulting Higgs, dark radiation and dark matter

signals in a particular model where the powers of ε, the Froggatt-Nielsen charges, are

compatible with SU(5) unification. We give predictions for the Higgs signal strength and

the amount of dark radiation, and focus on the nature and signals of mirror dark matter.

We show regions for hydrogen- and helium-like dark matter that are currently allowed

by direct detection, self-scattering and relic ionization limits, and discover that there is a

significantly larger parameter region for mirror neutron dark matter that is currently much

less constrained. We find that almost all regions for these dark matter candidates that are

presently allowed can be probed by direct detection in experiments under way.

Variant models are briefly discussed in section 4. Although the predictions differ in

detail, the broad picture is the same: all models with a single parameter describing charged

fermion mass hierarchies are highly constrained by data. Conclusions are drawn in section 5

and several calculations and details are presented in appendices A to E.

2 Minimal flavor hierarchy

A key feature of the quark and charged lepton masses is their large hierarchies. Any theory

of flavor should incorporate a set of parameters εa � 1 to describe these hierarchies. Within

the context of MMTH it is interesting to explore the possibility that the only breaking of

1The possibility to address both the dark matter and the dark radiation problems by Yukawa couplings

of the light mirror fermions larger than the SM ones is proposed in [8].
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P arises spontaneously from a difference between these hierarchy parameters in the two

sectors, ε′a 6= εa. A general form for the 3×3 up, down and charged lepton Yukawa matrices

in the two sectors in the effective theory below Λ is

yij(εa) =
∑

λaij ε
nij
a y′ij(εa) =

∑
λaij ε

′nij
a (2.1)

where λaij are order unity and the same in each sector. The powers naij vary between

theories, and the summation indicates that several such terms may be relevant for any ij.

In this paper we provide sharp predictions for MMTH by focussing on a simple scheme

for flavor symmetry breaking in the effective theory below Λ, with a single hierarchy param-

eter in each sector so that the label a may be dropped. In this “Minimal Flavor Hierarchy”

each Yukawa matrix element is dominated by a single term of the form

yij = εni λij ε
n̄j y′ij = ε′ni λij ε

′n̄j . (2.2)

With this structure, the coupling to the i (j) fermions on the left (right) receives a sup-

pression of the hierarchy parameter to the ni (n̄j) power. We stress that P forces ni, n̄j
and λij to be the same in the two sectors, while the spontaneous breaking of P arises only

via the single parameter ε′/ε 6= 1, which is constrained by data to typically be in the range

of 2–3.

What is the UV completion of the theory that leads to the structure of (2.2) in the

effective theory at the TeV scale? Above Λ the twin Higgs sector must be UV completed,

for example in a composite Higgs [11–18] or supersymmetric theory [19–23]. Without

addressing this completion, we can still discuss how the flavor breaking spurions εni , εn̄j

arise at high energies. Possibilities include Frogatt-Nielsen (FN) [9] and extra-dimensional

theories [10, 24].

We consider a FN theory with a U(1) flavor symmetry in each sector spontaneously

broken by 〈φ′〉 6= 〈φ〉, which is the only breaking of P in the theory. The flavor structure

of (2.2) results when the fermion charges (Qi, Q̄j) are chosen to be (ni, n̄j) and, for example,

ε = 〈φ〉 /M and ε′ = 〈φ′〉 /M , where M is the mass scale suppressing higher-dimensional

operators which have order unity couplings λij . In summary

ε =
〈φ〉
M

, ε′ =
〈φ′〉
M

, (ni, n̄j) = (Qi, Q̄j). (2.3)

The non-degeneracies between heavy FN fermions of the two sectors must not be so large

that the Twin Higgs mechanism is upset. While there are many such models, they are

greatly restricted since they must reproduce the known charged fermion masses. We find

it convenient to take the charges to be integral and ε close to the Cabibbo angle, and study

the predictions of three such models in detail.

Small flavor parameters can arise from wavefunctions of zero-modes in extra dimen-

sions [24]. The analysis of this paper is based entirely on the Yukawa structure of (2.2) —

can it apply to extra-dimensional theories as well as 4D FN theories? If the Higgs field is

spread out in the bulk and fermion wavefunctions are Gaussian, as in [24], then the Yukawa

matrix elements do not have the form of (2.2) as the overlap integral of the two fermion

– 3 –
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wavefunctions does not factor into a suppression factor for each fermion. However, if the

Higgs is localized in the bulk at yH , the structure of yij in (2.2) arises for any form of the

wavefunctions of the fermions in the bulk, with εni = ψi(yH) and εn̄j = ψj(yH), and λij is

the brane-localized coupling at yH [10]. However, it is not clear what spontaneous breaking

in the higher-dimensional set up would lead to ε′ 6= ε while leaving the powers ni, n̄j the

same in both sectors.

In appendix A we give two examples of how this could happen. In one example, the

fermions of the two sectors each live on orthogonal S1/Z2 spaces that intersect at the Higgs

brane in a 2D bulk. The parity P interchanges these two spaces and is spontaneous broken

by compactification to give different lengths, L′ 6= L. We find the flavor structure of (2.2)

is reproduced with

ε = e−µL, ε′ = e−µL
′
, (ni, n̄j) =

(
Mi

µ
,
M j

µ

)
, (2.4)

where Mi and M j are bulk masses of the fermions and µ is an arbitrary scale which we

choose to give ε close to the Cabibbo angle.

3 SU(5)-compatible model

In this section we investigate the prediction of a model with a U(1) flavor symmetry.

We consider a model consistent with the embedding of quarks and leptons into SU(5)

multiplets. We discuss the mass spectrum of mirror fermions, its effect on the Higgs signal,

dark matter phenomenology, and the amount of the dark radiation. We expect the main

features of the results to be similar for other U(1) charge assignment as long as the observed

fermions mass hierarchy is well reproduced, as in the two other models briefly discussed in

section 4.

3.1 Mass spectrum of mirror fermions

In this section we study U(1) flavor charges of fermions consistent with SU(5) [25–27]:

Q, ū, ē : (4, 2, 0), d̄, L : (4, 3, 3). (3.1)

The three numbers in each parenthesis denote charges of the first, second and third gen-

eration fermions, respectively. Using this structure in eqs. (2.2) and (2.3), the Yukawa

couplings of the Standard Model (SM) fermions are given by

yt ∼ 1 +O(ε4), yc ∼ ε4
(
1 +O

(
ε4
))
, yu ∼ ε8

(
1 +O

(
ε4
))

yb ∼ ε3
(
1 +O

(
ε2
))
, ys ∼ ε5

(
1 +O

(
ε2
))
, yd ∼ ε8

(
1 +O

(
ε2
))

yτ ∼ ε3
(
1 +O

(
ε2
))
, yµ ∼ ε5

(
1 +O

(
ε2
))
, ye ∼ ε8

(
1 +O

(
ε2
))
, (3.2)

where ε = 〈φ〉 /M and order unity coefficients from the λij are omitted. Note that there is

a correction of O(ε2) or O(ε4) to the leading order εn terms. The derivation of the leading

and correction terms are given in appendix B for down-type quarks. The quality of the

SU(5) model as an explanation of the flavour hierarchy is exhibited in appendix C.
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ye yµ yτ yd yu ys yc yb yt

2.8× 10−6 5.9× 10−4 1.0× 10−2 1.6× 10−5 7.4× 10−6 3.1× 10−4 3.6× 10−3 1.6× 10−2 0.99

Table 1. Yukawa couplings of the SM fermions at the renormalization scale µ = mZ .

For a fermion f with a dependence yf ∼ εn (1 +O (εm)), the ratio of the Yukawa

couplings of the corresponding mirror fermion to that of the SM fermion, at the same scale

above both masses, is given by

yf ′

yf
=

(
ε′

ε

)n (
1 + δf ε

′m − δf εm
)
, (3.3)

where δf depend on the λij and hence are unknown O(1) constants. It should be noted that

the top quark has n = 0, and hence the SM and the mirror top yukawa couplings are the

same (up to small corrections of relative order ε
′4, ε4) which is required to suppress a too

large correction to the Higgs mass term [28]. We use values of the SM Yukawa couplings

shown in table 1 at the renormalization scale µ = mZ [29]. In figure 1, we show the masses

of mirror fermions, including renormalization by the strong coupling. The bands show the

uncertainty due to the unknown constants δf , and correspond to |δf | < 1. The SM Yukawa

couplings yu and yd suffer uncertainties of 30% and 10%, but we assume central values

in figure 1.

The mass spectrum of the mirror particles also depends on the dynamical scale of

mirror QCD, Λ′QCD. To estimate Λ′QCD and the mirror QCD phase transition temperature

T ′c, we first take the mirror top quark mass to be 4mt, corresponding to v′/v = 4, and

the other mirror quark masses to be 50 GeV, and solve the renormalization group running

of the mirror QCD coupling constant. We then find the renormalization scale such that

6/g
′2
3 = 3.2, we match the scale with the inverse of the lattice spacing and we estimate T ′c

based on the lattice calculation in [30]. To estimate T ′c for generic quark masses, we then

use the scaling by the one-loop renormalization group equation. The mirror QCD phase

transition temperature is given by

T ′c ' 2.3 GeV
( mt′

690 GeV

)2/33 ∏
q=d,s,b,u,c

( mq′

50 GeV

)2/33

' 2.1 GeV

(
v′/v

4

)4/11(ε′/ε
2.5

)56/33

. (3.4)

Note that the last expression does not depend on the δf ’s, as they should be cancelled with

each other in the determinant of the mass matrix.

In the following sections we consider ε′/ε in the range of 2-3, and find that experimental

constraints will further reduce the allowed range. This range gives an origin for the needed

breaking of Parity in the Higgs potential via the difference y′f 6= yf in the Yukawa couplings

of the light fermions [5] as well as the small difference between yt and y′t.

We comment on the effect of the mass splitting between the heavy FN fields, which are

introduced to generate the structure in eq. (2.3). We first consider the case where none of

the masses of heavy fermions vanishes for ε = 0, which we assume in this paper. Through

– 5 –
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the mixing between fermions, a small mass difference of m′/m = 1 + O(ε′2) is expected,

where m and m′ are the mass scale of the heavy SM FN fermions and that of the heavy

mirror FN fermions, respectively, Although a difference between the gauge couplings g3,2,1

and g′3,2,1 is induced due to a threshold effect, its effects on the breaking of the Parity in

the Higgs potential is negligibly small. The difference between g3 and g′3 does not affect

the estimation of Λ′QCD and hence of T ′c at the one-loop level, as the product of the fermion

masses including light fermions are not affected by the mixing, and eq. (3.4) remains intact.

It is also possible that some of the heavy fermion masses vanishes for ε = 0. In this

case, ε 6= ε′ directly affects the mass splitting of those heavy fermions, and a mass splitting

of m′/m ∼ (ε′/ε)n is expected. The Parity breaking threshold correction to the gauge

coupling constant is given by

α′i − αi
αi

' αi
2π
N ln

(
ε′

ε

)n
, (3.5)

where N is the multiplicity of the FN fermions with a large mass splitting. As long as

α′2(3) − α2(3)/α . 0.2(0.5), the Parity breaking effect on the Higgs potential is small [5],

which requires Nn . 40. A displacement of T ′c as well as the mirror electromagnetic gauge

coupling is to be expected, which affect the amount of the dark radiation and the constraint

on dark matter. See appendix A for analogous considerations when the Minimal Flavor

Hierarchy arises from extra dimensions.

3.2 Higgs signal

In Twin Higgs models, the signal of the SM-like Higgs, h, is affected in two ways. First, h

is an admixture of the two original doublets H and H ′,

h = cγH + sγH
′, sγ ≡ sinγ ' v/v′, (3.6)

so that the couplings between h and two SM particles are reduced by a factor of cγ . Second,

h also couples to a pair of mirror particles, so that it will decay to mirror fermions lighter

than mh/2 via the interaction

L ⊃ −yf ′ H ′f ′Lf̄ ′R → − v√
2v′

yf ′ hf
′
Lf̄
′
R = −

vmf ′√
2v′2δf ′,mh

hf ′Lf̄
′
R. (3.7)

Here, δf ′,µ ≡ yf ′(mf ′)/yf ′(µ) encodes the effect of renormalization between a scale µ and

mf ′ . These decays lead to an invisible branching ratio for h

Brinv = Br(h→ f ′f̄ ′) ' 0.1×
(

3

v′/v

)4 ∑
f ′,2mf ′<mh

Nf ′

3
(
mf ′

10GeV
)2δ−2

f ′,mh
(3.8)

where phase space has been neglected. The invisible branching ratio, together with the

reduction of the Higgs coupling to SM particles, results in a universal deviation from unity

of the Higgs signal-strengths at colliders into any SM final state,

1− µ = 1− c2
γ(1− Brinv) ' s2

γ + Brinv. (3.9)

– 6 –
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Figure 1. The mass spectrum of mirror fermions following from (3.2) and (3.3). The shaded bands,

showing deviations from the simple scaling law, correspond to |δf | < 1. Central values are taken

for SM Yukawa couplings.

In figure 2, we show predictions on 1 − µ for v′/v = 4 and 3. The value of δ denotes the

maximum absolute value of δf we allow. We choose the sign and value of each δf so that

µ becomes as large as possible. Specifically, we first try δf = δ, and see if mf ′ > mh/2.

If so, we choose δf to be δ. If not, we choose δf = −δ. The figure shows that 1 − µ can

be smaller than the experimental bound, µ > 0.75 [31] for ranges of ε′/ε that depend on

v′/v and δ. Here we have adopted the constraint on the gluon fusion channel, as it has

the smallest uncertainty. ε′/ε . 2.2 is excluded because the mirror charm quark becomes

lighter than mh/2.

3.3 Mirror dark matter

The lightest mirror baryon and the lightest mirror charged particle are stable, and may

compose the dark matter of the universe. We assume that the mirror sector also has non-

zero matter asymmetry and that the asymmetric component of mirror matter explains

the observed dark matter density. Most of the discussion in this section is applicable to

generic mirror world scenarios. Dark matter phenomenology in the mirror world scenario

with y = y′ is discussed in [32, 33] and more recently in [34, 35]. For reviews of models

producing similar/equal asymmetries in standard matter and in dark matter see [36–38]

and references therein. As an example of a recent specific proposal in the context of twin

Higgs models see [39].
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Figure 2. Prediction for the Higgs signal strength. Panels with δ = 1, 2 have the mass spectrum

of mirror fermions chosen to minimize the invisible decay of the Higgs. Decays to c′ exclude ε′/ε

less than about 2.2.

3.3.1 Dark matter candidates

The second and third generation mirror fermions decay into the first generation, so only

the mirror up quark, down quark or electron may be stable. The dark matter candidate

depends on the mass relation between them. In the left panel of figure 3 we show the

masses of d′, u′ and e′: solid, dashed and dotted lines show ranges with |δf | ≤ 0, 1 and 2,

respectively, and uncertainties of the SM u and d Yukawa couplings, which we take to be

30% and 10%, are included. The right panel of figure 3 shows the maximum value of md′

allowed by the Higgs signal strength, for values of δ described in the caption.

In most of the parameter space me′ < mu′ + md′ , so that the mirror electron

is stable. Depending on mu′ ,md′ there are four candidates for the lightest baryon:

B′uuu, B
′
uud, B

′
udd, B

′
ddd. The B′uuu, B

′
ddd states are spin 3/2 and have an additional strong in-

teraction contribution to their masses, ∆ ∼ T ′c, compared to the spin 1/2 states B′uud, B
′
udd.

From figure 3 we see that there is a large region with md′ > mu′ and md′ −mu′ � me′ so

that the lightest baryon is B′uuu and B′uud, B
′
udd, B

′
ddd are unstable. The DM candidate is

(He)′∗ composed of (uuuee). (The star subscript indicates that the flavor structure of the

nucleus differs from the corresponding SM case.) The constraints on (He)′∗ dark matter

are discussed later.

In regions where md′ −mu′ ∼ me′ , the other baryons, B′uud, B
′
udd, B

′
ddd, could be the

lightest baryon, and B′uuu, B
′
uud, B

′
udd, B

′
ddd, e

′ may all be stable. The spectrum of

– 8 –
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Figure 3. Left panel: the masses of u′, d′ and e′, including uncertainties from the SM up and down

quark Yukawa couplings. Solid, dashed and dotted lines show the cases with δ =0, 1, 2 respectively.

Right panel: red and blue lines show the central value and δ = 2 ranges of the d′ and u′ masses,

without any SM Yukawa uncertainties. Black lines show the maximum d′ mass allowed from the

Higgs signal strength, showing the central and δ = 2 range as u′ and d′ masses are varied.
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Figure 4. The mass spectrum of the mirror baryons as a function of mu′ −md′ . The dotted lines

show the masses of B′uuu and B′ddd ignoring the contribution from the mirror QCD dynamics to the

mass difference between the lightest spin-3/2 baryons and the lightest spin-1/2 baryons, ∆. The

red lines show the mirror baryon of the dark matter candidate.
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me′ + ∆ < δmd′u′ me′ < δmd′u′ < me′ + ∆ −∆−me′ < δmd′u′ < me′ δmd′u′ < −me′ −∆

DM B′uuu + 2e′ B′uud + e′ B′udd B′ddd + e′

Table 2. Ranges of md′ −mu′ ≡ δmd′u′ for the four Dark Matter candidates.

these baryons is sketched in figure 4, for me′ > ∆ (me′ < ∆) in the left (right) panel. In

appendix D we show that, after freeze-out of the mirror weak interactions at a temperature

of about me′/18, the baryon asymmetry is always carried by the lightest baryon, even if

the heavier ones are stable.

Hence there are four DM candidates

(He)′∗(uuuee), H ′(uude), n′(udd), H ′∗(dddē) (3.10)

Regions of parameter space leading to these four candidates are shown in figure 5, separated

by black dashed lines, with the predicted regions in the SU(5) model shown by dark (light)

red shading for δ = 1(2), with δe = 0. The n′ candidate is particularly important since

the others are atoms and are significantly constrained by limits on self-scattering and relic

ionization, as described below. It is interesting and remarkable that the n′ region of figure 5

is large, arising from a large region with md′ −mu′ ∼ me′ , while the H ′ and H ′∗ regions

are smaller.

While weak interaction freeze-out puts the baryon asymmetry into the lightest baryon,

when atomic states form the electron capture process, if kinematically allowed, ensures that

(He)′∗(uuuee)→ H ′(uude), H ′(uude)→ n′(udd) H ′∗(dddē)→ n′(udd), (3.11)

so that the DM candidate is the lightest of (He)′∗, H
′, n′ and H ′∗. It is the latter two

processes that significantly enhance the n′ DM region. In figure 4 the red line tracks the

baryon of the DM candidate, and jumps where electron capture occurs, so that the DM

candidate does not necessarily contain the lightest baryon. The growth in the n′ DM region

is particularly pronounced for large me′ . The resulting ranges of md′ −mu′ for each of the

four DM candidates are shown in table 2.

3.3.2 Direct detection via Higgs exchange

Before investigating constraints and signals peculiar to each dark matter candidate, we

discuss a signal universal to all the above candidates. These dark matter particles interact

with SM nucleons through the exchange of the SM-like Higgs, h, and can be observed in

direct detection experiments [5, 40–42]. The scattering cross section between a nucleon

and a dark matter particle is given by [5]

σN,DM =
0.028

π

m2
DMm

2
N

v′4m4
h

(
mNmDM

mN +mDM

)2

, (3.12)

where mN and mDM are the masses of the nucleon and the DM, respectively. Here we

assume that the mass of dark matter is dominated by mirror fermion masses. This cross

section is shown in figure 6. We also show constraints from the XENOT1T experiment

(30days) [43], the expected sensitivities of XENON1T [44], LZ [45] and DARWIN [46]

experiments, as well as the neutrino floor [47].
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Figure 5. Dark (light) red shading gives the range of md′ −mu′ for δ = 1(2). Black dashed lines

separate regions where the DM candidate is (He)′∗, H
′, n′ and H ′∗ with δe = 0. The left (right) panel

is for minimal (maximal) mu′ . Gray shaded regions are excluded by the Higgs signal strength. The

position of the upper and lower black dotted lines are uncertain and are shown for ∆ = T ′c.
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Figure 6. The scattering cross section between a dark matter particle and a SM nucleon as a

function of the dark matter mass, which we assume is dominated by mirror fermion masses. The

three full coloured lines correspond to v′/v = 3, 4, 5.

3.3.3 Constraint on (He)′∗ dark matter: region (a) of figure 4

In Region (a) of figure 4, where d′ is sufficiently heavy, the lightest baryon is B′uuu. There-

fore the mirror matter asymmetry results in the asymmetric components of B′uuu and e′,

which are stable cosmological relics. Once most of these combine into (He)′∗, they may

explain the observed dark matter in the universe.

We calculate the recombination of (He)′∗, following the method described in [48], which

calculates the recombination in the SM. We rescale recombination coefficients, etc, accord-

ing to me′/me. This is applicable as long as mu′u′u′ � me′ . The temperature of mirror
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photons is determined via

Tγ′/Tγ =

(
7

29
∆Neff

)1/4( 4

11

)1/3

' 0.42

(
∆Neff

0.5

)1/4

. (3.13)

A sample evolution of the ionization fraction of the mirror electron, Xe′ , is shown in figure 7.

At low temperatures we find

Xe′ ' 0.05
( mu′u′u′

10 GeV

)0.8 ( me′

0.23 GeV

)0.8
(

∆Neff

0.5

)1/4

(3.14)

where we assume mu′u′u′/m
′
e � 1. The sudden decoupling approximation from Saha’s

equation predicts Xe′ ∝ mu′u′u′me′ , but, as it can be seen in figure 7, the approximation is

far from perfect. Since the ionized components scatter with each other with a long-range

force, their fraction is constrained by the possible change of the mass-to-luminosity ratio

in the Bullet Cluster [49, 50], Xe′ . 0.3.

The (He)′∗ self-interaction cross section at low velocity is given by

σ

mDM
' f(mu′u′u′/me′)

m2
e′α

2

1

mu′u′u′
= 8.2 cm2/g × 10 GeV

mu′u′u′

(
1 GeV

me′

)2 f(mu′u′u′/me′)

20
.

(3.15)

We evaluate the function f by calculating the s-wave scattering cross section using the

HFDHE2 potential [51]. The numerical value of f(mu′u′u′/me′) is given in figure 8. We

adopt the constraint σ/mDM < 10 cm2/g [52]. The Bullet Cluster gives a stronger con-

straint on σ/mDM. However, the velocity of dark matter there is large, v ∼ 10−2c, so that

the typical momentum exchanged between dark matter exceeds the inverse of the Bohr

radius of (He)′∗, giving a scattering cross section significantly suppressed relative to the

low velocity one in eq. (3.15).

In the top left panel of figure 9, the shaded regions are excluded by the constraint

on (me′ ,mu′u′u′) from the ionization fraction and the self-interaction. A portion of the
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Figure 8. The normalized self-interaction cross section of (He)′∗, f , of eq. (3.15).

parameter space is allowed. Solid lines show the prediction of the SU(5)-consistent FN

model for (me′ ,mu′u′u′). The lines labeled “δ = 0, 1, 2” show the range of the prediction

with |δf | = 0, 1, 2, taking into account the 30% uncertainty of the Yukawa coupling of the up

quark. We choose the signs of δu,e and the uncertainty of yu so that the upper (lower) two

lines are located to the upper-left (lower-right). Here we neglect the difference between

m(Bu′u′u′) and mu′u′u′ = 3mu′ . For small m′u the contribution from the mirror QCD

dynamics is non-negligible, and the solid lines would slightly rise. ε′/ε . 2.2 is excluded by

the measurement of the Higgs signal strength. It can be seen that ε′/ε = 2.2− 2.4 predicts

values of (me′ ,mu′u′u′) consistent with the constraints, and the mass of dark matter is in

the range (10 − 20) GeV. All of this range is currently allowed by data from XENON1T,

but much of the upper range will be probed by XENON 1T, LZ and DARWIN, as shown

by the dashed lines.

3.3.4 Constraints on H ′/H ′∗ dark matter: regions (b) and (f) of figure 4

In Region (f) where u′ is sufficiently heavier than d′, the lightest baryon is B′ddd, so that the

mirror asymmetry is in the asymmetric components of B′ddd and e′. They may recombine

into a neutral atom H ′∗ and explain the observed dark matter. The discussion here also

applies to Region (b). There the lightest baryon is B′uuu, but, once the recombination

B′uuu+e′ → He′∗ happens, He′∗ decays into B′uud+ν ′, and the recombination B′uud+e′ → H ′

follows. The first recombination process is more efficient than the second one due to the

larger charge of the nucleon, so that we may approximate the whole recombination process

as that of B′uud + e′. We denote the mirror baryons of unit charge (B′uud or B′ddd) as B′+.

We calculate the recombination of the mirror baryon and mirror electron following [48].

We find the ionization fraction,

Xe′ ' 0.05

(
mB′+ +me′

10 GeV

)0.9 ( mred,e′B′

0.94 GeV

)0.9
(

∆Neff

0.5

)1/4

, (3.16)
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Figure 9. Constraints on the masses of Bu′u′u′ (top left panel) or Bd′d′d′/Bu′u′d′ (top right panel)

and e′ from self-interactions of mirror atoms, the mirror ionization fraction and direct detection.

The bottom panel assumes that the mass of Bu′d′d′ = n′ is below mB′+ +m′e and the mirror electron

capture occurs inside the mirror atom. Solid curves show predictions of the SU(5)-compatible model

for a range of the uncertainties, as described in the text. Dashed curves give expected reaches of

future direct detection experiments.

where mred,e′B′ is the reduced mass of the mirror electron-baryon system. For fixed mirror

baryon and electron masses, the ionization fraction of H ′/H ′∗ is smaller than that of (He)′∗,

since the recombination cross section is larger for H ′/H ′∗.

For mB′/me′ = O(1− 10), the H ′/H ′∗ self-interaction cross section is given by [53]

σ

mDM
' 100

m2
e′α

2

1

mDM
' 5.1 cm2/g × 20 GeV

mB′

(
2 GeV

me′

)2

(3.17)

In the top right panel of figure 9, we show the constraints on (me′ ,mB′+) from the

ionization fraction and the self-interaction. In order for H ′(H ′∗) to be dark matter, mu′
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must be similar to (larger than) md′ . The right bottom panel of figure 5 shows that this is

possible if mu′ (md′) is larger (smaller) than its central value. The figure also shows that

for |δf | < 1, md′ is not much smaller than mu′ . Based on these observations, in the right

panel of figure 9 we show predictions for (me′ , 3md′) by solid lines, fixing δu = +1 and the

SM up Yukawa coupling larger than its central value by 30%. The various solid lines show

that much of the allowed space is possible with |δe| < 2. Hence, with ε′/ε = 2.2 − 2.5 the

prediction for (me′ ,mB′+) is consistent with the constraints, and the mass of dark matter

is in the range (20− 50) GeV. Xenon1T, LZ and DARWIN will probe all of this range.

3.3.5 Constraints on n′ dark matter: regions (c), (d) and (e) of figure 4

In Region (d) the lightest baryon is B′udd = n′, so that the mirror asymmetry is in the

asymmetric component of n′. There is no constraint from the ionization fraction or from

the self-interaction cross section.

In Regions (c) and (e) the lightest baryon is not n′ but a charged mirror baryon.

However, once recombination happens, the mirror atom decays into n′ + ν, yielding n′

as a stable particle. Still, the recombination may not be complete and there would be a

constraint from the ionization fraction. In Region (e) the recombination process is B′ddd +

ē′ → H ′∗, while in the right part of Region (c) it is B′uud + e′ → H ′. In the left part

of Region (c) the recombination proceeds via B′uuu + e′ → He′∗, He
′
∗ → B′uud + ν ′, and

B′uud + e′ → H ′. The first and the second reaction is more efficient than the last one, so

that we may approximate the whole process as B′uud+e→ H ′. Thus in Regions (c) and (e)

the recombination process is described as that of a mirror baryon with unit charge (B
′+)

and e′.

In appendix E we calculate the ionization fraction with the inclusion of electron cap-

ture. We find that the ionization fraction is well-fitted by the following formula,

Xe′ ' 0.05
( mn′

10 GeV

mred,e′B′

1.6 GeV

)0.8
(

∆Neff

0.5

)1/4

. (3.18)

In the bottom panel of figure 9, the corresponding constraint on (me′ ,mn′) is shown. The

constraint is weaker than that on H ′/H ′∗ dark matter, as the electron capture removes the

mirror atom from the thermal bath, inhibiting the inverse process H ′/H ′∗+ γ′ → B′+ + e′.

The solid lines are the same as those in the top right panel, and show that ε′/ε < 2.4 is

allowed with |δe| < 2. The mass of dark matter is in the range (20 − 60) GeV. Part of the

parameter region is excluded by XENON1T. Xenon1T, LZ and DARWIN will probe all of

this range.

3.3.6 Mirror and SM matter asymmetries

As we have seen, in viable parameter regions the mass of dark matter is O(10) GeV. Hence

the observed dark matter abundance is explained by a mirror matter asymmetry of the

same order as the SM matter asymmetry. A difference of O(1) in the asymmetries may arise

in some scenarios of baryogenesis. For example, if the baryon asymmetry is created by the

Affleck-Dine mechanism [54, 55], an O(1) difference is expected from the difference of the

initial mis-alignment in the angular direction of the scalar field responsible for baryogenesis.
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A dark matter mass of mp · ΩDM/Ωb ≈ 5 GeV is close to being allowed for He′∗ dark

matter. This would be consistent with equal matter asymmetries in the standard and in

the mirror sectors.

3.3.7 Possibility of mirror nucleosynthesis

Mirror baryons collide with each other and may form bound states, namely mirror nu-

clei [32]. Formation of nuclei of generic composite dark matter is discussed in [56, 57].

In our case first we argue that mirror nuclei composed of more than two baryons are

unlikely to be formed. In most of the parameter space the mass difference between the

lightest mirror baryon and the next to lightest one is much larger than me′/18, so that

almost all of the mirror baryon number is stored in the lightest mirror baryons. Therefore,

in order for the lightest mirror baryon to form a bound state with more than two baryons,

a non-zero angular momentum is required due to Fermi statistics. This leads to a positive

energy of order 1/(mB′r
2), where r is the radius of the bound state. We expect that r−1

is as large as the mass of the mediator of the mirror strong force. In the parameter space

of interest md′,u′ > T ′c, so 1/(mB′r
2) = O(mu′,d′). On the other hand the possible binding

energy would be at most O(T ′c) < O(md′.u′). Thus we expect that mirror nuclei composed

of more than two lightest mirror baryons are unbound.

There could be a mirror nucleus composed of two lightest mirror baryons. A lattice

QCD calculation with a quark mass larger than normal seems to make space for di-neutron

and di-proton states [58, 59]. Although it is not clear if a mirror di-neutron and di-proton

exist for our mirror quark masses, or mirror di-B′uuu and di-B′ddd exist for any mirror

quark mass, let us suppose that those states are stable and discuss the phenomenological

consequence. To verify this assumption, a dedicated lattice calculation is needed.

Once the temperature drops below the binding energy, almost all of the lightest mirror

baryons in figure 4 are combined into di-baryon states. In Region (a), a mirror baryon with

charge 4 is formed. The recombination as well as the self-scattering cross section is affected,

in a way that we do not pursue further in this paper. In Region (b), mirror di-protons are

formed via the formation of di-baryons and the mirror electron capture. The constraint on

He′∗ is applicable but with twice larger baryon mass. There is no viable parameter space

for the SU(5) model. In Regions (c), (d) and (e), mirror di-neutrons are formed. The

constraint on n′ is again applicable with twice larger baryon mass. All parameter region

of the SU(5) model with v′/v < 4 can be probed by the XENON1T. In Region (f) mirror

di-B′ddd are formed. The constraint on He′∗ is applicable but with twice larger baryon mass.

3.4 Dark radiation

In the early universe with a sufficiently large temperature the SM particles and their mirror

partners interact with each other and have the same temperature. Below some temperature

Td the interaction becomes inefficient and they evolve independently. Mirror particles

eventually decay/annihilate into mirror photons and neutrinos, which are observed as dark

radiation. The abundance of the dark radiation, traditionally expressed as the excess of
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the effective number of neutrinos from the SM prediction, is

∆Neff =
4

7
g′r ×

(
10.75

g(Td)

)4/3

×
(
g′(Td)

g′r

)4/3

, (3.19)

where g(T ) and g′(T ) are the effective entropy degrees of freedom (d.o.f) of the SM particles

and the mirror particles at temperature T , respectively. The second factor in the r.h.s. of

eq. (3.19) expresses the heating of the SM neutrinos, whereas the third factor expresses

the heating of the dark radiation. g′r is the d.o.f. of the radiation component of the mirror

sector. In the minimal model where the mirror neutrinos are nearly massless, g′r = 29/4.

We extract the d.o.f. of the SM particles g(T ) from [60].

3.4.1 Generic decoupling temperature

In this subsection we treat Td as a free parameter. If Td > T ′c, the mirror gluons give a large

contribution to g′(Td), and ∆Neff is larger than the constraint from the Planck satellite,

∆Neff < 0.65 (2σ). We only consider the case with Td < T ′c, and neglect the contribution

from the mirror gluons to g′(Td).

The contributions of the mirror photons, neutrinos and leptons to g′(Td) are readily

estimated using the ideal gas approximation. The mirror quarks, on the other hand, cannot

be treated as an ideal gas, especially for Td < T ′c, where the dynamics of the mirror quarks

is better described as a gas of mirror hadrons. Figure 1 shows that among mirror hadrons,

the ones composed of mirror up quarks are the most important ones. We estimate the

contribution from the mirror QCD sector, treating the hadron gas as an ideal gas composed

of mirror σ (J = 0, CP = ++), η′ (J = 0, CP = +−) and ω (J = 1, CP = −−), with their

masses given by

m′2σ = (2mu′)
2 +

(
1.5T ′c

)2
,

m′2η′ = (2mu′)
2 +

(
3T ′c
)2
, (3.20)

m′2ω′ = (2mu′)
2 +

(
4T ′c
)2
.

The contribution proportional to T ′2c is inferred from the Standard Model QCD spectrum.

In figure 10, we show the prediction of ∆Neff as a function of Td with fixed me′ , mu′ and

Tc′ , neglecting the contributions from the other mirror fermions. The brown, red and green

lines show the contribution from γ′ν ′, γ′ν ′e′ and γ′ν ′e′σ′η′′ω′, respectively. These figures

show that ∆Neff is dominated by the contribution from γ′, ν ′ and e′. For comparison, we

also show ∆Neff calculated using the quark picture with the ideal gas approximation by a

blue line: confinement suppresses the abundance of dark radiation.

In figure 11, we show the prediction of ∆Neff as a function of ε′/ε and Td. Here we

choose the sign and the value of each δf so the µ becomes as large as possible, expect

for δe, for which we take δe = δ to suppress ∆Neff . The red line shows the mirror QCD

phase transition temperature T ′c. Above this line the contribution from mirror gluons

makes ∆Neff unacceptably large. Blue shaded regions are excluded due to too small µ, as

discussed in section 3.2. The amount of the dark radiation is typically ∆Neff = 0.3− 0.6.
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Figure 10. The dark radiation abundance predicted as a function of the decoupling temperature.
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Figure 11. The predicted dark radiation abundance expressed as ∆Neff . We choose the mass

spectrum of mirror fermions to minimize the invisible decay of the Higgs except for the mirror

electron. In the red shaded region Td > T ′c and the abundance of the dark radiation is too large.

The solid and dashed blue lines show the decoupling temperature via the Higgs exchange in the

hadron (Td,had) and the quark-gluon picture (Td,qg), respectively. For the quark-gluon picture the

decoupling temperature is mainly determined by the annihilation of mirror quarks, while for the

hadron picture it is mainly determined by the decay of mirror glueballs.
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3.4.2 Decoupling temperature from Higgs exchange

In this subsection we estimate the decoupling temperature determined by the Higgs ex-

change between the SM particles and the mirror partners. The interaction rate between the

mirror leptons and the Standard fermions is readily estimated using the ideal gas picture,

following [5]. The scattering cross section between a mirror fermion f ′ and a SM fermion

f is given by

σvrel(ff
′ → ff ′) =

1

8π

(mf

v

)2 (vmf ′

v′2

)2 mfmf ′

mf +mf ′

pcm

m4
h

, (3.21)

where we take a non-relativistic limit. Here pcm is the momentum of the fermion in the

center of mass frame. In the thermal bath, it has a typical size

p2
cm =

4T (mf +mf ′ +
√
mfmf ′)

3
(
2 +mf/mf ′ +mf ′/mf

) . (3.22)

The annihilation cross section of a pair of f ′ into a pair of f is given by

σ(f ′f̄ ′ → ff̄)vrel =
Nf

4π

(mf

v

)2 (vmf ′

v′2

)2 (m2
f ′ −m2

f )3/2

m3
f ′m

4
h

p2
f ′ . (3.23)

Here pf ′ is the momentum of f ′ in the center of mass frame. In the thermal bath, it is

as large as p2
f ′ ' 3mf ′T/2. Nf is the multiplicity of the Dirac fermion f : for one lepton

(quark) Nf = 1(3). The transfer rate of the energy density of mirror particles into SM

particles is then given by

d

dt
ρ′|f ′ =

∑
f

(4NfnF (mf , T ))
(
4Nf ′nF

(
mf ′ , T

))
σvrel(ff

′ → ff ′)×∆E

+
∑
f

Nf ′4nF (mf ′ , T )2σvrel(f
′f̄ ′ → ff̄)× 2mf ′ , (3.24)

where nF (m,T ) is the number density of a fermion of mass m in the thermal bath at

temperature T , and ∆E ' T is a typical energy transfer by the scattering ff ′ → ff ′.

The scattering with mirror QCD charged particles requires a dedicated treatment. We

use in succession quark and hadron pictures with an ideal gas approximation to calculate

the energy transfer rate.

Let us first treat mirror QCD charged particles as an ideal gas of mirror quarks and

gluons. The scattering cross section between a mirror fermion f ′ and a SM fermion f is

given by eq. (3.21). The annihilation cross section of a pair of mirror quarks q′ into a pair

of f is given by

σ(q′q̄′ → ff̄)vrel '
Nf

4π

(mf

v

)2 (vmf ′

v′2

)2 (m2
f ′ −m2

f )3/2

m3
f ′m

4
h

p2
f ′ ×

2πx

1− e−2πx

(
1 + x2

)
,

x =
4

3

α′s
vrel

, (3.25)
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where we have included the Sommerfeld effect [61] for a p−wave annihilation [62]. The fine

structure constant should be evaluated at the scale µ ' 4/3mq′α
′
s/2 [63], so we solve the

consistency condition

2

3
mq′α

′
s(µ) = µ (3.26)

to determine the appropriate scale. We put vrel =
√
T/mq′ to estimate the Sommerfeld

enhancement factor. The contribution of a mirror quark q′ to the energy transfer rate is

given by eq. (3.24).

The mirror gluons also couple to the SM Higgs,

L =
v

v′
h√
2v′

α′s
12π

∑
q′

(
1 +

11

4π
α′s(mq′)

)
Ga
′
µνG

µνa′ ' v

v′
h√
2v′

α′s
2π
Ga
′
µνG

µνa′ . (3.27)

The annihilation cross section of a pair of mirror gluons into a pair of SM fermions f is

σ(g′g′ → ff̄)vrel =
2Nf

π

( v
v′

)2
(
α′s
2π

)2 (mf

v

)2 1

v′2

(
pcm

mh

)4
(

1−
m2
f

p2
cm

)3/2

, (3.28)

while the scattering cross section is

σ(g′f → g′f) =
4

3π

( v
v′

)2
(
α′s
2π

)2 (mf

v

)2 1

v′2

(
pcm

mh

)4

, (3.29)

where we take the non-relativistic limit for f . Due to the absence of the Sommerfeld effect,

however, the energy transfer from mirror gluons is negligible in comparison with that from

mirror quarks.

We define the decoupling temperature by (dρ′/dt)/ρ′ = H, where H is the T -dependent

expansion rate of the universe. In figure 11, we show the decoupling temperature Td,qg
determined by the Higgs exchange with the quark picture by dotted lines. We find that

Td,qg can be lower than T ′c. The decoupling temperature is dominantly determined by the

annihilation of mirror quarks. We note, however, that this does not mean that the actual

decoupling temperature Td can be below T ′c. As the temperature drops and becomes close

to T ′c, the ideal gas approximation of mirror quarks is not straightforwardly applicable,

and is expected to break down for Td < T ′c. Our estimate at least shows, however, that the

decoupling temperature is close to T ′c.

Let us next treat the mirror QCD charged particles as an ideal gas of mirror hadrons.

We include the scattering and the annihilation of mirror glueballs. A spin-0 glueball with

CP = ++ mixes with the SM Higgs and decays into SM fermions. A result of a lattice

calculation is available for the lightest one, S′0++ . Using the lattice calculation for the

relevant matrix element and for the glueball mass [64],

< 0|g′2s Ga
′
µνG

µνa′ |S0++ >' 2.7m3
S′
0++

, mS′
0++
' 5.3T ′c, (3.30)

the decay rate of S′0++ into a pair of Standard Model fermion f is given by

Γ(S′0++ → ff̄) =
1

32π

( v
v′

)2
(

1

8π2

)2 (mf

v

)2 1

v′2

2.72m7
S′
0++

m4
h

1−
4m2

f

m2
S′
0++

3/2

. (3.31)
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The scattering cross section of a mirror glueball S′i can be estimated by the trace anomaly,

< S′i|
11

32π2
g2′
s G

a′
µνG

µνa′ |S′i >= 2m2
S′i
, (3.32)

where we assume that the mass of the mirror glueball is not affected by the masses of

mirror fermions, which is the case for sufficiently large mirror fermion masses and/or large

Nc. The scattering cross section between a mirror glueball S′i and f is given by

σvrel(fS
′
i → fS′i) =

1

8π

(
4

11

)2 (mf

v

)2
(
vmS′i

v′2

)2 mfmS′i

mf +mS′i

pcm

m4
h

. (3.33)

We take into account the scattering with mirror glueballs of spin SSi = 0, 1, 2 and CP =

++,+−,−+,−− , whose masses are estimated in [65]. The contribution of the mirror

glueballs to the energy transfer rate is given by

d

dt
ρ′|S =

∑
f,i

(4NfnF (mf , T ))
(

(2SSi + 1)nB

(
mS′i

, T
))

σvrel(fS
′
i → fS′i)×∆E

+
∑
f

nB(mS0++ , T )Γ(S0++ → ff̄)×mS0++ , (3.34)

where nB(m,T ) is the number density of a boson of mass m in the thermal bath at

temperature T .

We also include the annihilation and the scattering of mirror quarkonia. The decay

rate of a mirror quarkonium with spin-0 and CP = ++, χq′ , into a pair of SM fermions is

approximately given by

Γ(χq′ → ff̄) ' σ(q′q̄′ → ff̄)vrel|pq′=mq′α′s
1

8π

(
mq′α

′
s

)3
. (3.35)

The scattering cross section between a mirror quarkonium χ′i and f is given by

σvrel(fχ
′
i → fχ′i) =

1

8π

(
4

11

)2 (mf

v

)2
(
vmχ′i

v′2

)2 mfmχ′i

mf +mχ′i

pcm

m4
h

. (3.36)

Here we assume that the mass of the quarkonium is dominated by the mirror quark mass.

We take into account the scattering of all the quarkonia composed of d′, s′, b′, u′, c′ with

spin-CP 0+− (η-like) and 1−− (J/ψ-like).

In figure 11 we show by solid lines the decoupling temperature Td,had determined by the

Higgs exchange in the hadron picture. In some of the parameter space Td,had is lower than

T ′c. The decoupling temperature is dominantly determined by the decay of glueballs. The

estimated Td,had is however close to T ′c, and the thermal effect may be important (e.g. that

on the glueball mass). The raise of Td,had when lowering ε′/ε below about 2.6 is due to

the kinematic suppression of the decay of the lightest glueball into bb̄. Inclusion of higher

resonances might make Td,had smaller than T ′c also for ε′/ε . 2.6.
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3.4.3 Decoupling temperature from kinetic mixing

The kinetic mixing between the hypercharge gauge fields,

1

2

εkin

cosθ2
W

BµνB′µν , (3.37)

can maintain thermal equilibrium between the SM and mirror sectors through the scattering

between a mirror charged fermion and the SM photon. The mirror electron is the lightest

mirror charged fermion and decoupling does not occur until the temperature drops below

its mass. For T � me′ , the scattering cross section for the process e′γ′ ↔ e′γ is given by

σ(f ′γ′ ↔ f ′γ)v =
8π

3
ε2kinα

2 1

m2
e′
. (3.38)

The scattering rate becomes smaller than the expansion rate of the universe below a tem-

perature Td,kin,

Td,kin '
me′

4 + 2ln εkin
10−6

. (3.39)

Sufficient suppression of ∆Neff requires 0.2 GeV < Td,kin < T ′c. For the mirror electron

mass we are interested in, this is achieved for εkin ∼ 10−7 − 10−6. Kinetic mixing of this

size is excluded if dark matter is mirror atoms, but is allowed if dark matter is composed

of mirror neutrons [5].

4 Variant models

While in principle there are many models based on eqs. (2.2), (2.3), they are greatly re-

stricted by the need to account for the known fermion masses and quark mixings. To

illustrate the broad persistence, given this constraint, of the mirror fermion spectrum

obtained in section IIIA, we briefly consider in this section two variants of the SU(5)-

compatible model examined there. In both the new models [66] we take the FN charge

of the Q1 multiplet to deviate by one unit from the charge of ū1, ē1 in order to get the

same scaling law in terms of ε as in the Volfenstein parameterization of the CKM angles,

Vus ≈ λc, Vcb ≈ λ2
c , Vub ≈ λ3

c , in terms of λc = 0.22.

The FN charges of the two models and the corresponding scaling law of the masses are:

• Model B1

Q : (3, 2, 0), ū : (4, 2, 0), ē : (4, 2, 0), d̄, L : (4, 3, 3) (4.1)

mt ∼ 1 +O(ε4), mc ∼ ε4
(
1 +O

(
ε4
))
, mu ∼ ε7

(
1 +O

(
ε4
))

mb ∼ ε3
(
1 +O

(
ε2
))
, ms ∼ ε5

(
1 +O

(
ε2
))
, md ∼ ε7

(
1 +O

(
ε2
))

mτ ∼ ε3
(
1 +O

(
ε2
))
, mµ ∼ ε5

(
1 +O

(
ε2
))
, me ∼ ε8

(
1 +O

(
ε2
))

(4.2)
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Figure 12. The mass spectrum of the mirror fermions in models B1, B2. The bands show a

possible deviation from the simple scaling law with |δ| < 1. Here we have taken the central value

for the Yukawa couplings of the SM fermions.

• Model B2

Q : (3, 2, 0), ū : (4, 2, 0), ē : (4, 2, 0), d̄, L : (3, 2, 2) (4.3)

mt ∼ 1 +O(ε4), mc ∼ ε4
(
1 +O

(
ε4
))
, mu ∼ ε7

(
1 +O

(
ε4
))

mb ∼ ε2
(
1 +O

(
ε2
))
, ms ∼ ε4

(
1 +O

(
ε2
))
, md ∼ ε6

(
1 +O

(
ε2
))

mτ ∼ ε2
(
1 +O

(
ε2
))
, mµ ∼ ε4

(
1 +O

(
ε2
))
, me ∼ ε7

(
1 +O

(
ε2
))

(4.4)

How well these models account for the known masses and mixings is illustrated in ap-

pendix C, where they are also compared with the SU(5)-compatible model of section IIIA.

Based on eq. (3.3), similarly to figure 1, we show in figure 12 the masses of the mirror

fermions. The consistency of these models with the constraints from Higgs decays is shown

in figure 13. Concerning Dark Matter, the overlap of the masses of u′, d′ in figure 12 for

the model B2 makes it relatively more likely that in this case B′udd be the lightest stable

mirror baryon.

5 Conclusions

Can Minimal Mirror Twin Higgs be the reason why LHC has not found, so far, any signal of

New Physics and, at the same time, explain the surprising similar size of Dark Matter and
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Figure 13. Prediction of the Higgs signal strength in models B1, B2. Panels with δ = 1, 2 have

the mass spectrum of mirror fermions chosen to minimize the invisible decay of the Higgs. Decays

to c′ exclude ε′/ε less than about 2.2.

baryon densities? In [5] we have argued in favour of this possibility, attributing the needed

breaking of parity only to a difference in the Yukawa couplings between standard and

mirror fermions, except the top. We were led to this hypothesis by the need to keep under

control, in the absence of an exotic cosmological history, the amount of mirror radiation.

In this paper we have made the further step of identifying the source of the difference

in the standard and mirror Yukawa couplings: a different single scaling parameter, ε versus

ε′, that is at the origin of the hierarchy in the masses of the charged fermions. In this

way the masses of the light mirror fermions are raised, while the top Yukawa couplings

remain similar, and the separation between the heaviest and the lightest is reduced, with

respect to the masses of the standard fermions, by almost two orders of magnitude. This

can be done in a general scheme that we call “Minimal Flavor Hierarchy”. While there

can be many such models, different in the physical origin and in the detailed parameters,

the range of the predicted signals is greatly reduced by the need to reproduce the known

charged fermion masses. Therefore, although we have based our detailed predictions on a

specific Froggatt-Nielsen model with SU(5)-compatible U(1) charges, we believe that their

main features have a broader validity.

From a phenomenological point of view the new main achievement in the present paper

is contained in the part of section 3 where we discuss the various DM configurations, which

can be in the form of mirror atoms, Hydrogen-like or Helium-like, or of mirror neutrons. A
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special summary of the overall situation is in figure 9. It is remarkable that one can give a

detailed prediction of the possible DM configurations and that the entire allowed regions,

mostly controlled by the single parameter ε′/ε, are within reach of foreseen direct detection

experiments for a wide range of the uncertainties. As already pointed out in [5] we expect

other correlated signals in Higgs decays and in the amount of dark radiation. In theories

with Minimal Flavor Hierarchies these predictions are sharpened, as shown in figures 2, 13

and figure 11 respectively.
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A Minimal flavor hierarchy from extra dimensions

We first review the model of the flavor hierarchy introduced in [10]. We consider a flat

extra dimension compactified to an orbifold S1/Z2, with fixed points y = 0,±L/2. For a

fermion ψ the following boundary condition is imposed to obtain a chiral fermion in the

low energy 4D theory,

ψ(x,−y) = iγ5ψ(x, y), ψ(x,
L

2
+ y) = iγ5ψ(x,

L

2
− y), γ5 = −i

(
1

−1

)
. (A.1)

The fermion ψ has a mass term with a non-trivial profile in the extra dimension,

L5D = ψ̄
(
iγN∂N −m(y)

)
ψ, m(y) =

{
M : 0 < y < L/2

−M : −L/2 < y < 0.
(A.2)

The profile is consistent with the boundary condition as well as with the Z2 symmetry, and

may be dynamically generated with a thin domain wall of a scalar field. The equation of

motion of the wave function of the zero-mode of ψ is given by

∂yψ0,± = ±Mψ0,±. (A.3)

The solution for this equation is symmetric for y ↔ −y due to the profile of m(y), and only

ψ+,0 is consistent with the boundary condition. The normalized zero mode wave function

is given by

ψ0(y) =

√
2M

eML − 1
eMy. (A.4)

The zero mode is localized around y = 0 for M < 0, and around y = L/2 for M > 0.
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Figure 14. Sketch of a 6D theory that leads to the MMTH scenario.

The structure of the Yukawa couplings in eq. (2.2) arises when the SM fermions, with

bulk mass Mi different from each other, are localized around y = L/2, while the Higgs field

is confined to the brane at y = 0. From the 5D brane couplings

L5D = −δ(y)
λij
M∗

HfL,if̄R,j , (A.5)

we obtain the 4D Yukawa couplings

L4D = −yij HfL,if̄R,j , yij =
λij
M∗

ψfL,ii,0(0)ψf̄R,j ,0(0) ∝ e−Mi/Lλije
−M̄j/L (A.6)

The O(1) top yukawa coupling is obtained by localizing Q3 and ū3 at y = 0.

To obtain the minimal flavour hierarchy of MMTH, as described in section 2, we

consider the 6D configuration depicted in figure 14. The extra dimensions are compactified

to T/(Z2 × Z2), with fixed points at (y5, y6) = (0, 0), (L/2, 0), (0, L′/2) and (L/2, L′/2).

The SM and mirror fermions are confined to the 5D brane y6 = 0 and y5 = 0 respectively.

Those fermions have exponential profiles in each 5D brane via the mechanism shown above.

The Higgs sector is confined to the 4D brane at (y5, y6) = (0, 0). The Z2 symmetry, which

is now understood as the symmetry y5 ↔ y6, is spontaneously broken by L′ < L, which

gives ε′ > ε.

We assume that the gauge fields live in the 6D bulk which ensures the identity of the

gauge couplings from the 6D bulk, g = g′, at the tree level. A difference between them

could arise from the quantum correction from KK modes and the 5D bulk gauge couplings.

The former is loop suppressed and is much smaller than the tree level one unless the cut

off scale is much larger than the KK scale. The latter is also suppressed if L,L′ & M−1
∗ ,

where M∗ is the cut off scale, due to the volume factor. It is also possible to obtain non-

Minimal Mirror Twin Higgs with g 6= g′ with the above two corrections, or confining gauge

fields to the 5D bulks. This might be beneficial for two reasons. First, g′3 > g3 raises the

mirror QCD phase transition temperature T ′c, which helps suppressing the abundance of

dark radiation. Second, α′ > α makes recombination for the mirror atomic dark matter

more efficient. It also suppresses the self-interaction of atomic dark matter, widening the

allowed parameter range. We do not pursue this possibility in the present paper.
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So far we have treated the Higgs field as a fundamental field. In some UV completions of

MMTH the Higgs could be composite. Then the above derivation of the suppression factor

e−ML should be applied to the operators which eventually lead to the SM Yukawa couplings.

For example, if the Yukawa couplings originate from mixing between fundamental SM

fermions and composite fermions, we may apply the above discussion to the mixing instead

of the Yukawa couplings in eq. (A.5).

B Scaling law

The down Yukawa matrix for the SU(5) compatible model in eq. (3.1) is of the form

L = H∗QiYd,ij d̄j , Yd,ij = ε3

aε5 bε4 cε4

dε3 eε2 fε2

gε1 h i

 . (B.1)

The square of the matrix is

YdY
†
d = ε6

 ε8
(
b2 + c2 + a2ε2

)
ε6
(
be+ cf + adε2

)
ε4
(
bh+ ci+ agε2

)
ε6
(
be+ cf + adε2

)
ε4
(
e2 + f2 + d2ε2

)
ε2
(
eh+ fi+ dgε2

)
ε4
(
bh+ ci+ agε2

)
ε2
(
eh+ fi+ dgε2

)
h2 + i2 + g2ε2

 . (B.2)

From this we obtain the bottom Yukawa coupling,

y2
b =

(
h2 + i2

)
ε6
(
1 +O(ε2)

)
. (B.3)

By integrating out the bottom quark, the 2 × 2 squared Yukawa matrix of the first two

generations is given by

(
YdY

†
d

)
ds,11

' (ch− bi)2

h2 + i2
ε14

(
1 +

ε2
(
−a
(
h2 + i2

)
+ bgh+ cgi

)2
(h2 + i2) (ch− bi)2

)
,

(
YdY

†
d

)
ds,12

' (ch− bi)(fh− ei)
h2 + i2

ε12

×

(
1 +

(
−a
(
h2 + i2

)
+ bgh+ cgi

) (
−d
(
h2 + i2

)
+ egh+ fgi

)
(h2 + i2) (ch− bi)(fh− ei)

ε2

)
,

(
YdY

†
d

)
ds,22

' (fh− ei)2

h2 + i2
ε10

(
1 +

(
−d
(
h2 + i2

)
+ egh+ fgi

)2
(h2 + i2) (fh− ei)2

ε2

)
. (B.4)

Therefore the Yukawa coupling of the strange quark is

y2
s =

(fh− ei)2

h2 + i2
ε10
(
1 +O(ε2)

)
, (B.5)

and, by integrating s out, we obtain

y2
d =

(−aei+ afh+ bdi− bfg − cdh+ ceg)2

(fh− ei)2
ε16
(
1 +O(ε2)

)
. (B.6)
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model mb
mt

mτ
mt

mc
mt

ms
mt

mµ
mt

mu
mt

md
mt

me
mt

SU(5) 1.6ε3 1.1ε3 1.8ε4 1.0ε5 1.25ε5 2.5ε8 4.5ε8 0.6ε8

B1 1.6ε3 1.1ε3 1.8ε4 1.0ε5 1.25ε5 0.55ε7 1.0ε7 0.6ε8

B2 0.5ε2 0.4ε2 4.0ε4 0.45ε4 0.6ε4 2.2ε7 0.7ε6 0.5ε7

Table 3. Leading scaling terms for the charged fermion masses in: i) SU(5), with ε = 0.22; ii)

model B1, with ε = 0.22; iii) model B2, with ε = 0.18.

model Vus Vcb Vub

SU(5) 4.5ε2 1.0ε2 2.3ε4

B1 1.0ε 1.0ε2 0.5ε3

B2 1.2ε 1.5ε2 1.8ε3

Table 4. Leading scaling terms for the CKM mixings in: i) SU(5), with ε = 0.22; ii) model B1,

with ε = 0.22; iii) model B2, with ε = 0.18.

C Evidence for the minimal flavor hierarchy

How well does the flavor structure of (2.2) account for the observed hierarchies of quark and

charged lepton masses in the three FN models considered in this paper? With ε of about

0.2 and relative corrections of order ε2 or smaller, the leading scaling terms in eq. (3.2) give

a quite accurate approximation for the charged fermion masses and quark mixing angles

in the SM. These leading terms are shown in table 3 and 4 for the models considered in

the text by fitting the experimental numbers without subleading corrections. In the SU(5)

model the coefficients of the leading terms shown in the tables are determined by a single

scaling variable, taken to be ε = 0.22, and five integers. In model B1 we take ε = 0.22 and

in model B2 ε = 0.18.

The closeness to unity of the coefficients of the leading scaling terms shown in table 3

and 4 represents evidence for the FN picture of the flavour parameters. The neutrino

masses and the PMNS angles can also be described by extending the models discussed in

the text with right handed neutrinos [27, 66].

D Mirror matter asymmetry for mu′ ∼ md′

As commented in section IIIC6, it is natural to assume that the mirror sector has non-

zero baryon and lepton asymmetries similar to the SM ones. As the universe cools, the

symmetric components annihilate and almost disappear, and only the asymmetric compo-

nents remain. The dark matter component is determined by the scattering of the following

particles,

B′uuu, B
′
uud, B

′
udd, B

′
ddd, e

′, ν ′. (D.1)
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Let us first consider the B′uud ≡ p′, B′udd ≡ n′, e′ and ν ′ system. For simplicity we

drop the superscript ′ from now on. The corresponding number densities are given by

np = 2

(
mpT

2π

)3/2

e−mp/T+µp/T , np̄ = 2

(
mpT

2π

)3/2

e−mp/T−µp/T , (D.2)

nn = 2

(
mnT

2π

)3/2

e−mn/T+µn/T , nn̄ = 2

(
mnT

2π

)3/2

e−mn/T−µn/T , (D.3)

ne = 2

(
meT

2π

)3/2

e−me/T+µe/T , nē = 2

(
meT

2π

)3/2

e−me/T−µe/T , (D.4)

nν '
3ζ(3)

4π2
T 3 +

1

12
T 3µν

T
, nν̄ '

3ζ(3)

4π2
T 3 − 1

12
T 3µν

T
. (D.5)

The asymmetries are given by

∆p ≡
np − np̄
T 3

= 4
( mp

2πT

)3/2
e−mp/T sinh

µp
T
, (D.6)

∆n ≡
nn − nn̄
T 3

= 4
( mn

2πT

)3/2
e−mn/T sinh

µn
T
, (D.7)

∆e ≡
ne − nē
T 3

= 4
( me

2πT

)3/2
e−me/T sinh

µe
T
, (D.8)

∆ν ≡
nν − nν̄
T 3

=
1

6

µν
T
. (D.9)

The charge neutrality condition, the conservation of the baryon asymmetry B ≡ (nB −
nB̄)/T 3, and that of the lepton asymmetry L ≡ (nL − nL̄)/T 3 require that

∆e = ∆p, (D.10)

∆n = B −∆p, (D.11)

µν/T = 6L− 6∆p. (D.12)

The charged current interactions maintain

µp + µe = µn + µν , (D.13)

up to some decoupling temperature Td,W . The reaction p+e→ n+ν changes the asymmetry

of p and e with a rate

d
dt∆p

∆p
= −σv(p+ e→ n+ ν)

npne − np̄nē
∆p

,

σv(p+ e→ n+ ν) =
1

8π

(mp +me −mn)2

v4
(D.14)

For T . mp/25, np̄ is smaller than np, and we obtain

d
dt∆p

∆p
' σv(p+ e→ n+ ν)ne ' −σv(p+ e→ n+ ν)2

( me

2πT

)3/2
e−me/T . (D.15)
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Here we assume that the symmetric component of e dominates over the asymmetric one.

The decoupling temperature of the process is given by (d∆p/dt)/∆p(T ) = H(T ). We find

Td,W '
me

18
. (D.16)

At this temperature the asymmetric component of the mirror electrons is smaller than the

symmetric one, as assumed. Furthermore, since mp > me, it is indeed verified that np̄ is

much smaller than np.

The dominance of the symmetric component of e implies |µe/T | � 1. Eq. (D.12) shows

that µν/T ' 6L. On the other hand, at least one of µn/T and µp/T must be much larger

than unity to maintain the baryon asymmetry. Thus eq. (D.13) is solved by µp = µn+6LT .

We therefore obtain the relative abundance of p and n,

∆n

∆p
= e(mp−mn)/T e−6L

(
mn

mp

)3/2

. (D.17)

Except for that case with mp ' mn, |mp−mn|/Td,W is much larger than unity. For |L| � 1,

the baryon asymmetry is stored in the lighter between p and n. If L = O(1) this conclusion

may be changed, but we do not pursue this possibility in this paper.

One can repeat the same analysis including all baryons B′uuu, B′uud, B
′
udd, B

′
ddd, and

show that the chemical potentials of those four baryons are the same. We conclude that

the mirror baryon asymmetry is stored in the lightest among B′uuu, B′uud, B
′
udd and B′ddd,

as anticipated in section IIIC1.

E Mirror recombination with electron capture

In the following we drop the superscript ′ for simplicity. We consider the situation where

mp + me > mn, so that the mirror atom is unstable due to the mirror electron capture

process, p+ e→ n+ ν. For s-orbit states, the decay rate of a mirror atom is given by

Γ(H(ns)→ n+ ν) = |ψ(0)|2σv(p+ e→ n+ ν) =
(meα)3

n5π

1

8π

(mp +me −mn)2

v4

' 2× 10−20 GeV

(
4

v′/v

)4 ( me

1 GeV

)3
(
mp +me −mn

1 GeV

)2 1

n5
. (E.1)

Around the temperature where mirror recombination occurs, T . meα
2, the decay rate of

the mirror atom is much larger than the Hubble expansion rate, and electron capture is

expected to affect the recombination process.

We formulate recombination with electron capture by modifying the Peebles model [67].

We consider transitions between the 1s, 2s and 2p atomic states as well as the ionized states.

The differential equation governing their fractions, x1 ≡ n1s/nDM, x2 ≡ (n2s + n2p)/nDM,
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xe ≡ ne/nDM, are given by

ẋe =−
(
x2
enDMα1 − x1β1

)
P1s −

(
x2
enDMαB − x2βB

)
(E.2)

ẋ1 = +
(
x2
enDMα1 − x1β1

)
P1s +

3

4
Γ2p1sP2s1s

(
x2 − 4x1e

−E2s1s/T
)

+
1

4
Γ2s1s

(
x2 − 4x1e

−E2s1s/T
)
− x1Γ1s,ec (E.3)

ẋ2 = +
(
x2
enDMαB − x2βB

)
− 3

4
Γ2p1sP2s1s

(
x2 − 4x1e

−E2s1s/T
)

− 1

4
Γ2s1s

(
x2 − 4x1e

−E2s1s/T
)
− 1

4
x2Γ2s,ec (E.4)

and satisfies the detailed balance relation if electron capture is absent.

Recombination into the ground state. The first terms in the r.h.s. of eqs. (E.2)

and (E.3) are from the process p + e ↔ H(1s) + γ. The coefficient α1 is the thermal

average of the cross section times the velocity of the process p+ e→ H(1s) + γ, which we

extract from [68] by subtracting the case B coefficient from the case A one. The coefficient

β1 is given by

β1 =

(
meT

2π

)3/2

e−E1s/Tα1, (E.5)

where E1s is the binding energy of the 1s state. P1s is the probability that the emitted

photon escapes from the capture by the inverse process and is given by the optical depth

τ1s as

P1s =
1− e−τ1s

τ1s
, τ1s =

x1nDM

H

π2α1

E3
1s

(
meT

2π

)3/2

. (E.6)

When electron capture is absent, as recombination proceeds the optical width is so large

that the process p + e ↔ H(1s) + γ does not contribute to recombination. With electron

capture, x1 remains very small and the optical depth is almost zero, and we may use the

approximation P1s ' 1.

Recombination into excited states. The second term in the r.h.s. of eq. (E.2) is the

effect of the process p+ e↔ H(n > 1) + γ. The n > 2 states rapidly cascade down to the

n = 2 states, and we may use the following so-called case-B coefficient for the evolution

of x2,

αB ≡ 1.14×
∞∑
n=2

n−1∑
l=0

l∑
m=−l

〈σv(p+ e→ H(nlm) + γ)〉thermal . (E.7)

The factor of 1.14 allows the Peebles approximation to agree with a multi-level calcula-

tion [48]. The coefficient βB is given by

βB =

(
meT

2π

)3/2

e−E1s/TαB. (E.8)
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Figure 15. A sample evolution of the ionization fraction when electron capture occurs.

Lyman-α decay 2p→1s. The second terms in the r.h.s. of eqs. (E.3) and (E.4) are the

effect of the process H(2p)↔ H(1s)+γ, and Γ2p1s is the decay width of this process. E2s1s

is the difference of the energy levels of the n = 2 and 1 states. P2p1s is the probability that

the emitted photon escapes from the capture by the inverse process, and is given by the

optical depth τ2p1s as

P2p1s =
1− e−τ2p1s
τ2p1s

, τ2p1s =
x1nDM

H

3π2Γ2p1s

E3
1s

. (E.9)

As is the case with recombination to the ground state, we may use the approximation

P2p1s ' 1.

Two-photon decay. The third terms in the r.h.s. of eqs. (E.3) and (E.4) are the effect

of the process H(2s)↔ H(1s) + 2γ, and Γ2s1s is the decay width of this process. Without

electron capture, the two-photon decay may dominate over the Lyman-α decay, due to the

large optical depth τ2p1s. With electron capture, the two-photon decay is negligible, and

we ignore it.

Electron capture. The last terms in the r.h.s. of eqs. (E.3) and (E.4) are the effect of

the process H(2s, 1s)→ n+ν. The inverse process is ineffective. This process ensures that

x1 � 1, and P1s, P2p1s ' 1

The atomic states are short-lived and we may estimate x1 and x2 by putting ẋ1 =

ẋ2 = 0, which we call x1,0 and x2,0. We find that x2,0 � x1,0 during recombination where

T � E2s1s, and the evolution equation of xe is given by

ẋe = −x1,0Γ1s,ec − x2,0Γ2s,ec ' −x1,0Γ1s,ec. (E.10)

The full expression for x1,0 is not simple, but we can find an approximate solution by

adding eqs. (E.3) and (E.4), and neglecting x2,

x1,0 '
x2
enDM(α1 + αB)

β1 + Γ1s,ec
. (E.11)

– 32 –



J
H
E
P
1
0
(
2
0
1
7
)
0
1
5

The evolution equation of xe is given by

ẋe ' −x2
enDM(α1 + αB)

Γ1s,ec

β1 + Γ1s,ec
. (E.12)

This equation has a simple interpretation. Once the mirror electron is recombined into

atomic states, it rapidly falls into the ground state. The total rate of the formation of

the ground state is given by x2
enDM(α1 + αB). The ground state mirror electron is again

scattered into a free state with a rate β1 or is captured by the mirror proton with a

rate Γ1s,ec. The latter contributes to recombination, and hence the recombination rate is

suppressed by Γ1s,ec/(β1 + Γ1s,ec).

A sample evolution of the ionization fraction of the mirror electron is shown in figure 15.

Here we use the full expression for x1,0. An approximated x1,0 gives about a 10% larger

ionization fraction. In the calculation we take v′/v = 4 and mp + mn − me = me/2 to

estimate the mirror electron capture rate, but the resultant ionization fraction is insensitive

to these parameters, since during recombination β1 � Γ1s,ec and the dependence on Γ1s,ec

drops out from eq. (E.12).

Open Access. This article is distributed under the terms of the Creative Commons
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[61] A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annalen Phys. 403 (1931)

257.

[62] S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010)

105009 [arXiv:0903.5307] [INSPIRE].

[63] T. Nagano, A. Ota and Y. Sumino, O(α2
s) corrections to e+e− → tt̄ total and differential

cross-sections near threshold, Phys. Rev. D 60 (1999) 114014 [hep-ph/9903498] [INSPIRE].

[64] H.B. Meyer, Glueball matrix elements: A lattice calculation and applications, JHEP 01

(2009) 071 [arXiv:0808.3151] [INSPIRE].

[65] Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D

73 (2006) 014516 [hep-lat/0510074] [INSPIRE].

[66] F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015) 373

[arXiv:1503.04071] [INSPIRE].

[67] P.J.E. Peebles, Recombination of the Primeval Plasma, Astrophys. J. 153 (1968) 1 [INSPIRE].

[68] D. Pequignot, P. Petitjean and C. Boisson, Total and effective radiative recombination

coefficients, Astron. Astrophys. 251 (1991) 680.

– 36 –

https://doi.org/10.1086/587859
https://arxiv.org/abs/0704.0261
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0261
https://doi.org/10.1063/1.438007
https://doi.org/10.1063/1.438007
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.116.041302
https://arxiv.org/abs/1508.03339
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03339
https://doi.org/10.1103/PhysRevD.89.043514
https://arxiv.org/abs/1311.6468
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.6468
https://doi.org/10.1016/0550-3213(85)90021-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B249,361%22
https://doi.org/10.1016/0550-3213(95)00538-2
https://arxiv.org/abs/hep-ph/9507453
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9507453
https://doi.org/10.1016/j.physletb.2015.11.001
https://arxiv.org/abs/1406.1171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1171
https://doi.org/10.1007/JHEP06(2015)011
https://arxiv.org/abs/1411.3739
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3739
https://doi.org/10.1103/PhysRevD.87.034506
https://arxiv.org/abs/1206.5219
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5219
https://doi.org/10.1103/PhysRevD.86.074514
https://arxiv.org/abs/1207.4277
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4277
https://doi.org/10.1038/nature20115
https://arxiv.org/abs/1606.07494
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07494
https://doi.org/10.1002/andp.19314030302
https://doi.org/10.1002/andp.19314030302
https://doi.org/10.1088/0954-3899/37/10/105009
https://doi.org/10.1088/0954-3899/37/10/105009
https://arxiv.org/abs/0903.5307
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.5307
https://doi.org/10.1103/PhysRevD.60.114014
https://arxiv.org/abs/hep-ph/9903498
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9903498
https://doi.org/10.1088/1126-6708/2009/01/071
https://doi.org/10.1088/1126-6708/2009/01/071
https://arxiv.org/abs/0808.3151
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3151
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevD.73.014516
https://arxiv.org/abs/hep-lat/0510074
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0510074
https://doi.org/10.1140/epjc/s10052-015-3576-5
https://arxiv.org/abs/1503.04071
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04071
https://doi.org/10.1086/149628
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,153,1%22

	Introduction
	Minimal flavor hierarchy
	SU(5)-compatible model
	Mass spectrum of mirror fermions
	Higgs signal
	Mirror dark matter
	Dark matter candidates
	Direct detection via Higgs exchange
	Constraint on (He)'(*) dark matter: region (a) of figure 4
	Constraints on H'/H'(*) dark matter: regions (b) and (f) of figure 4
	Constraints on n' dark matter: regions (c), (d) and (e) of figure 4
	Mirror and SM matter asymmetries
	Possibility of mirror nucleosynthesis

	Dark radiation
	Generic decoupling temperature
	Decoupling temperature from Higgs exchange
	Decoupling temperature from kinetic mixing


	Variant models
	Conclusions
	Minimal flavor hierarchy from extra dimensions
	Scaling law
	Evidence for the minimal flavor hierarchy
	Mirror matter asymmetry for m(u')   m(d')
	Mirror recombination with electron capture

